
Math 181 Calculus and Analytic Geometry II Fall 2009

Review of Calculus I topics

Main topics: real numbers, functions, limits, continuity, derivative, antiderivative, definite integral,
Fundamental Theorems of Calculus

Real numbers
A rational number is a ratio of two integers such as 3/25 or −107/5. The rational numbers alone do

not “fill up” the number line. The additional numbers needed to fill in the number line are called irrational
numbers. The rationals and irrationals together form the set of real numbers.

Here is a fundamental fact about the real numbers: Between any two real numbers, there is at least one
rational number and at least one irrational number.

Functions
A function is defined by three things: a set called the domain, a set called the codomain, and a rule that

assigns one element in the codomain to each element in the domain. Each element in the domain has exactly
one partner in the codomain. An element in the codomain can have no partner, one partner, or multiple
partners in the domain. Those elements in the codomain that have at least one partner make up the range
of the function.

Limits

Notation. lim
x→a

f(x) = L

Example. lim
x→0

sinx
x

= 1 (conjecture based on numerical/graphical evidence; proof based on definition of

sine function, geometry, and squeeze/pinch/sandwich theorem)

Definition (informal). A function f has a limit at a of L if there is a single number L such that all outputs
f(x) are close to L for all inputs x close to a (except possibly a itself).

Definition (precise). A function f has a limit at a of L if there is a single number L such that for any value
of the challenge ε, there is a response δ such that |f(x)− l| < ε for all x satisfying 0 < |x− a| < δ.

Definition (informal, alternate). A function f has a limit at a of L if for each infinite list of inputs ending
at a, the corresponding list of outputs ends at L.

Computational techniques.
1. Conjecture based on numerical or graphical evidence.

2. Find algebraic expression equivalent for all x 6= a.

3. L’Hopital’s rule (when derivatives are in place)

Applications. Used in defining continuity, derivative, definite integral, . . .

Continuity

Definition. A function f is continuous for input a if lim
x→a

f(x) = f(a).

Interpretation. No holes, jumps, or poles in graph of f at a. The output f(a) is what you expect based
on looking at outputs for inputs near a.

Applications. Continuity is a basic, often unstated, assumption in many modeling applications.



Derivatives

Definition. A function f is differentiable for input x if

lim
h→0

f(x+ h)− f(x)
h

exists. If so, this limit is called the derivative of f at x and denoted f ′(x). That is,

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

.

Notation. f ′(x) or
df

dx

Interpretation. For y = f(x), the derivative f ′(x) gives the rate of change in the quantity y with respect
to change in the quantity x. On a graph of the function, this is the slope of the graph. That is, slope is the
rate of change in the vertical direction with respect to change in the horizontal direction.

Computational techniques. There are many computation techniques:

• Directly from definition (to get derivatives of basic functions such as power, trigonometric, exponential)

d

dx
[xn] = nxn−1

d

dx
[sinx] = cosx

d

dx
[cosx] = − sinx

d

dx
[ex] = ex

• Rules for combinations of functions: constant factor, sum, product, quotient, chain

d

dx
[kf ] = k

df

dx
for any constant k

d

dx
[f + g] =

df

dx
+
dg

dx
d

dx
[fg] = f

dg

dx
+ g

df

dx
d

dx
[f/g] =

g df/dx− f dg/dx
g2

d

dx
[f(g(x))] = f ′(g(x)) g′(x)

• Implicit differentiation

Applications. There are many applications including

• Optimization

• Related rates

• Essential features of function graph (max/min, concavity, points of inflection)
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Antiderivatives

Definition. A function F is an antiderivative of the function f if F ′(x) = f(x) for all x in the domain of f .

So the basic antiderivative problem is the following: Given one function f , find another function F for which
the derivative is f . Write this as ∫

f(x) dx = F (x)

Theorem. If F1 and F2 are antiderivatives of f for an interval if inputs, then F1 and F2 differ by a constant.
That is, there is a constant C so that F1(x)− F2(x) = C for all x in the relevant interval.

Computational techniques. The basic method of finding an antiderivative is to recognize patterns of
derivatives. There are specific techniques to automate some of this pattern recognition. Here are some
examples:

d

dx
[x2] = 2x so

∫
2x dx = x2 + C

d

dx
[sinx] = cosx so

∫
cosx dx = sinx+ C

For general powers, we have

d

dx
[xn] = nxn−1 so

∫
xn dx =

1
n+ 1

xn+1 + C

General rules for combinations of functions include

1.
∫
k f(x) dx = k

∫
f(x) dx for any constant k.

2.
∫ [

f(x) + g(x)
]
dx =

∫
f(x) dx+

∫
g(x) dx

Definite integrals

Definition. Given a function f defined for the interval [a, b], construct a Riemann sum in the following

way: Partition the interval [a, b] into n subintervals of equal size ∆x =
b− a
n

. Label the subintervals with

the index k = 1, 2, 3, . . . , n. Choose an input ck in each subinterval. Form the Riemann sum
n∑

k=1

f(ck)∆x. If

lim
∆x→0

n∑
k=1

f(ck)∆x exists with the same value for all choices of inputs ck, we say f is integrable for [a, b] and

we denote the limit
∫ b

a

f(x) dx. We call this number the definite integral of f for [a, b].

Interpretation. The definite integral
∫ b

a

f(x) dx gives the total (signed) area between the graph of the

function f and the x-axis between x = a and x = b.

If f(t) is a rate of change in some quantity, then
∫ b

a

f(t) dt gives the total accumulation of that quantity

during the interval from t = a to t = b.

If f(x) is a (length) density for some quantity, then
∫ b

a

f(x) dx gives the total amount of that quantity

for the region from x = a to x = b.

Theorem (Fundamental Theorem of Calculus 1). If f is continuous for [a, b] and F is defined by F (x) =∫ x

a
f(u) du, then F ′(x) = f(x) for all x in [a, b].

Theorem (Fundamental Theorem of Calculus 2). If f is continuous for [a, b] and F is an antiderivative of

f for [a, b], then
∫ b

a

f(x) dx = F (b)− F (a).
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